60m³/d小區生活污水處理設備功率
地球是我們賴以生存的家園,不論是空氣還是水源對我們都至關重要。水是生命之源,人們可以幾天不吃飯,但是不能幾天不喝水。水是保證機體正常運行的基本。當然每個人都希望自己能夠呼吸新鮮的空氣,可是現在的環境卻令人失望。
污水處理設備可以讓我們生活中的一些廢水,污水,變廢為寶。還可以二次利用。現在的水資源仍然很緊張,不論是屠宰場還是醫院工廠排放的廢水 都可以凈化,用來洗衣,澆花等,可以循環利用。
醫療污水處理設備新標準
1、新標準對醫院產生的污水、廢氣和污泥進行了全面控制,在強調對含病原體污水的消毒效果的同時,兼顧生態環境安全。
2、在生物指標上,新標準對排入下水道與排入水體的醫院污水提出不同要求。新標準嚴格區分醫院質,同時根據污水去向分為兩個等級,并在原有標準基礎上提出嚴格的控制各級指標。
3、新標準考慮了消毒效果和生態安全問題,針對不同質醫院及污水去向對消毒時間和余氯量均作了明確規定,嚴格了余氯標準的上限。
4、在理化指標方面,對排入地表水體的醫院污水和傳染病醫院污水的COD、BOD5、SS、動植物油、石油類、陰離子表面活劑等指標都在原有標準基礎上進行了嚴格的控制,以增強污水處理系統的抗風險。考慮氨氮也消耗消毒劑,對氨氮也提出了嚴格要求。
目前,國內醫院使用的消毒劑以次氯酸鈉為主。雖然價格較低,但平安較差,易于泄露,且氯與有機物作用會生成有機鹵代物,進入水體后造成新的污染,威脅人類健康。次氯酸鈉發生器雖然沒有以上的危險,但其關鍵部件損壞,體積大,電耗和鹽耗都較高,操作管理方便。二氧化氯被WHO確認為一種安全高效的強力殺菌劑,對經水傳播的病原微生物,包括耐氯*的病毒、芽孢及水路系統中的異養菌、鹽還原菌和真菌等均有很好的消毒效果。
60m³/d小區生活污水處理設備功率
污泥沉淀能差可能有以下幾個原因:
1、原水中含有毒物質,破壞污泥絮體或降低了污泥的沉降能,需控制好進水水質。
2、污泥質可能缺乏營養(氮、磷等)導致污泥的活與沉降能降低,所以需要補充營養鹽。
3、二沉池底底部泥層太高,需增強排泥。
4、二沉池底部污泥發生反硝化或厭氧,大量的產生氣泡會影響污泥沉淀,需增大好氧池曝氣量或者是加強排泥。
5、好氧池負荷太高或太低都會影響污泥絮體的大小,且影響沉淀,所以應該控制好氧池污泥負荷。
1、耗時太多,每測定一個樣需回流2個小時;
2、回流設備占用的空間大,使批量測定出現困難;
3、分析費用較高,特別是銀;
4、測定過程中,回流水的浪費驚人;
5、毒性的汞鹽易造成二次污染;
6、試劑用量大,耗材成本高;
7、測試過程復雜,不宜于推廣。
(二)、設備
1.250mL全玻璃回流裝置
2.加熱裝置(電爐)
3.25mL或50mL酸式滴定管,錐形瓶,移液管,容量瓶等。
(三)、試劑
1.重鉻酸鉀標準溶液(c1/6K2Cr2O7=0.2500mol/L)
2試亞鐵靈指示液
3.亞鐵銨標準溶液[c(NH4)2Fe(SO4)2•6H2O≈0.1mol/L](使用前標定)
4.-銀溶液
(四)、測定步驟
亞鐵銨標定:準確吸取10.00mL重鉻酸鉀標準溶液于500mL錐形瓶中,加水稀釋至110mL左右,緩慢加入30mL濃,搖勻.冷卻后,加入3滴試亞鐵靈指示液(約0.15mL),用亞鐵銨溶液滴定,溶液的顏色由黃色經藍綠色至紅褐色即為終點。
(五)、測定
取20mL水樣(必要時酌情少取加水至20或稀釋后再取),加入10mL的重鉻酸鉀,插上回流裝置,再加入30mL銀,加熱回流 2h
冷卻后,用90.00mL水沖洗冷凝管壁,取下錐形瓶。
溶液再度冷卻后,加3滴試亞鐵靈指示液,用亞鐵銨標準溶液滴定,溶液的顏色由黃色經藍綠色至紅褐色即為終點,記錄亞鐵銨標準溶液的用量。
測定水樣的同時,取20.00mL重蒸餾水,按同樣操作步驟作空白實驗.記錄滴定空白時亞鐵銨標準溶液的用量。
相比其他除磷技術,吸附法除磷具有容量大、耗能少、污染小、去除快和可循環等優勢,但其自身也存在許多不足之處:共存離子對改性活性炭除磷影響顯著;生物質的吸附容量較小;pH的變化對金屬氧化物吸附容量影響很大;幾種特定的陰離子對硅基介孔分子篩影響較大;黏土礦物普遍存在吸附容量小的缺陷。因此,在以后的吸附法除磷研究中,主要有幾個方面值得深入探究:(1)要兼顧以上不足之處選擇合適的改性方法;(2)對改性的吸附原理研究,目前的研究多注重去除效果,缺乏系統全面的描述除磷原理和過程的理論及模型;(3)研究吸附劑的后續處理,不注重吸附磷后的后續處理,往往會帶來二次污染,不利于環保,可以把廢料開發為植物肥料或土壤改良劑等。隨著吸附劑改性的發展和理論的研究深入,吸附法在廢水除磷和治理富營養化水體中必定會發揮重要作用。
· 運行中的查驗及解析 ·
年度中的九個月,對于廠區的處理體系,予以連續查驗。進出水查驗指標主要包括含鹽數目、氨氮及COD含量。
每周設定采兩次樣,微生物解析得到的生物膜,被制備成樣品,其主要來源于反應池。合理的時間,便于取樣。
解析方法主要包含重絡酸鉀法、堿性消解法、紫外分光光度法、納氏試劑比色法。除此以外,為測定總體的含鹽量,采納了重量法。
· 擬定計數方式 ·
微生物計數流程,首先搜集一定規格的生物膜,添加至混合的生理鹽水當中。之后將這種混合液添加到錐形瓶。
選用合理的振蕩裝置,一般而言均是漩渦架構的振蕩器。經由半小時的振蕩,再把混合液安設在超聲波裝置上,接續振蕩兩分鐘,以便分散生物膜。異養菌的計數,可采納稀釋倍數法;選用適合的培養基,一般為營養瓊脂。
采納MPN法,細菌計數等同于填料的微生物數目。計數得來的精準數值,擬定成CFU這一計數范圍。
進水階段
進水階段指從向反應器開始進水至到達反應器大容積時的一段時間。
進水階段所用時間需根據實際排水情況和設備條件確定。在進水階段,曝氣池在一定程度上起到均衡污水水質、水量的作用,因而,陽R對水質、水量的波動有一定的適應性。
1、化學氧化技術
化學氧化技術常用于生物處理的前處理。一般是在催化劑作用下,用化學氧化劑去處理有機廢水以提高其可生化性,或直接氧化降解廢水中有機物使之穩定化。
1.1 Fenton 試劑氧化法
該技術起源于19世紀90年代中期,由法國科學家H. J. Fenton提出,在酸性條件下,H2O2在Fe2+離子的催化作用下可有效的將酒石酸氧化,并應用于蘋果酸的氧化。*以來,人們默認的Fenton主要原理是利用亞鐵離子作為過氧化氫的催化劑,反應產生羥基自由基式為:Fe2++ H2O2 ——Fe3++OH-+•OH, 且反應大都在酸性條件下進行。
在化學氧化法中,Fenton法在處理一些難降解有機物(如*類、苯胺類)方面顯示出一定的*性。隨著人們對Fenton法研究的深入,近年來又把紫外光(UV)、草酸鹽等引入Fenton法中,使Fenton法的氧化能力大大增強。
用UV + Fenton法對氯酚混合液進行了處理,在1h內TOC去除率達到83.2%。Fenton法氧化能力強、反應條件溫和、設備也較為簡單,適用范圍比較廣,但存在處理費用高、工藝條件復雜、過程不易控制等缺點,使得該法尚難被推廣應用。
含油污水的處理工作是一項復雜的系統工程,我們應詳細的分析含油污水的來源以及危害,不斷優化含油污水的處理工藝,同時科學的采用含油污水的關鍵處理技術,真正的做好含油污水的處理工作。
好氧池作用:
利用好氧微生物(包括兼性微生物)在有氧氣存在的條件下進行生物代謝以降解有機物,使其穩定、無害化的處理方法。微生物利用水中存在的有機污染物為底物進行好氧代謝,經過一系列的生化反應,逐級釋放能量,終以低能位的無機物穩定下來,達到無害化的要求,以便返回自然環境或進一步處理。污水處理工程中,好氧生物處理法有活性污泥法和生物膜法兩大類。
厭氧池的作用:
利用厭氧菌的作用,使有機物發生水解、酸化和甲烷化,去除廢水中的有機物,并提高污水的可生化性,有利于后續的好氧處理。高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階
膜生物反應器系統主要用于加快污水生化處理反應速度,減小生物池容積,同時取代傳統的活性污泥法實現泥水分離,代謝去除有機物以及去除色度等。
超濾技術對SDI值的降低較為有效,經中空纖維超濾膜處理水的SDI=0,但當SDI過大時,特別是較大顆粒對中空纖維超濾膜有嚴重的污染,在超濾工藝中,必須進行預處理,即采用石英砂、活性炭或裝有多種濾料的過濾器過濾,至于采取何種處理工藝尚無固定的模式,這是因為供水來源不同,因而預處理方法也各異。
例如,對于具有較低濁度的自來水或地下水,采用5~10μm的精密過濾器(如蜂房式、熔噴式及PE燒結管等),一般可降低到5左右。在精密過濾器之前,還必須投加絮凝劑和放置雙層或多層介質過濾器過濾,一般情況下,過濾速度不超過10m/h,以7~8m/h為宜,濾水速度越慢,過濾水質量越好。
去離子法的目的是將溶解於水中的無機離子排除,與硬水軟化器一樣,也是利用離子交換樹脂的原理。在這 使用兩種樹脂-陽離子交換樹脂與陰離子交換樹脂。陽離子交換樹脂利用氫離子(H+)來交換陽離子;而陰離子交換樹脂則利用氫氧根離子(OH-)來交換陰離子,氫離子與氫氧根離子互相結合成中性水
反滲透膜分離工藝設計中常見的流程有如下幾種:
①一級一段法這種方式是料液進入膜組件后,濃縮液和產水被連續引出,這種方式水的回收率不高,工業應用較少。另一種形式是一級一段循環式工藝,它是將濃水一部分返回料液槽,這樣濃溶液的濃度不斷提高,因此產水量大,但產水水質下降。
②一級多段法當用反滲透作為濃縮過程時,一次濃縮達不到要求時,可以采用這種多步式方式,這種方式濃縮液體體積可減少而濃度提高,產水量相應加大。
③兩級一段法當海水除鹽率要求把NaCl從35000 mg/L降至500mg/L時,則要求除鹽率高達98.6%如一級達不到時,可分為兩步進行。即*步先除去NaCl 90%,而第二步再從*步出水中去除NaCl 89%,即可達到要求。如果膜的除鹽率低,而水的滲透性又高時,采用兩步法比較經濟,同時在低壓低濃度下運行時,可提高膜的使用壽命。
④多級反滲透流程在此流程中,將*級濃縮液作為第二級的供料液,而第二級濃縮液再作為下一級的供料液,此時由于各級透過水都向體外直接排出,所以隨著級數增加水的回收率上升,濃縮液體體積減少濃度上升。為了保證液體的一定流速,同時控制濃差極化,膜組件數目應逐漸減少。
超臨界CO2 萃取再生法
超臨界流體萃取法再生活性炭是20世紀70年代末開始發展的一項新技術。SCF具有密度大、表面張力小、擴散系數大、溶解度大、傳質速率高、擴散性能好,與固體活性炭不相溶,且對活性炭表面存在活化作用等優點,是再生活性炭的理想溶劑。
方法:依據SCF 萃取原理,利用SCF 作為溶劑,將吸附在活性炭上的有機物擴散并溶解于SCF 之中。
特點:研究表明,超臨界CO2 對活性炭的再生效果比較理想,在較溫和的條件下就可達到較理想的再生效率,并且經多次循環使用再生后,活性炭仍能保持較高的吸附性能。其不足之處是:設備投資大,運行成本高。
9)臭氧氧化再生法
方法:臭氧氧化再生法是用臭氧做氧化劑將吸附在活性炭上的有機物氧化分解,實現活性炭再生的方法。
特點:臭氧氧化再生會使活性炭表面酸性官能團增多,吸附*的能力下降,所以必須找出合適的臭氧用量,在不改變活性炭表面化學性質的條件下,除去*和其他氧化副產物。


